Partial Spectra with Least - Squares Rational Filters ∗
نویسندگان
چکیده
We present a method for computing partial spectra of Hermitian matrices, based on a combination of subspace iteration with rational filtering. In contrast with classical rational filters derived from Cauchy integrals or from uniform approximations to a step function, we adopt a least-squares (LS) viewpoint for designing filters. One of the goals of the proposed approach is to build a filter that will lead to linear systems that are easier to solve by iterative methods. Among the main advantages of the proposed LS filters is their flexibility. Thus, we can place poles in more general locations than with the formulations mentioned above, and we can also repeat these poles a few times for better efficiency. This leads to a smaller number of required poles than in existing methods. As a consequence, factorization costs are reduced when direct solvers are used and the scheme is also beneficial for iterative solvers. The paper discusses iterative schemes to solve the linear systems resulting from the filtered subspace iteration that take advantage of the nature and structure of the proposed LS filters. The efficiency and robustness of the resulting method is illustrated with a few model problems as well as several Hamiltonian matrices from electronic structure calculations.
منابع مشابه
Least-squares Rational Filters for the Solution of Interior Eigenvalue Problems
This paper presents a method for computing partial spectra of Hermitian matrices, based on a subspace iteration method combined with rational filtering. While the general approach is the same as that of the FEAST package, the emphasis of this paper is on the selection of the filter. Specifically, the goal is to show the appeal of a least-squares viewpoint for designing filters. In particular, t...
متن کاملSimplex design method in simultaneous spectrophotometric determination of silicate and phosphate in boiler water of power plant and sewage sample by partial least squares
Partial least squares modeling as a powerful multivariate statistical tool was applied tothe simultaneous spectrophotometric determination of silicate and phosphate in aqueoussolutions. The concentration range for silicate and phosphate were 0.02-0.6 and 0.4-3 μg ml-1,respectively. The experimental calibration set was composed with 30 sample solutions using amixture design for two component mix...
متن کاملDetermination of Protein and Moisture in Fishmeal by Near-Infrared Reflectance Spectroscopy and Multivariate Regression Based on Partial Least Squares
The potential of Near Infrared Reflectance Spectroscopy (NIRS) as a fast method to predict the Crude Protein (CP) and Moisture (M) content in fishmeal by scanning spectra between 1000 and 2500 nm using multivariate regression technique based on Partial Least Squares (PLS) was evaluated. The coefficient of determination in calibration (R2C) and Standard Error of Calibra...
متن کاملRapid and Simultaneous Determination of Montelukast, Fexofenadine and Cetirizine Using Partial Least Squares and Artificial Neural Networks Modeling
Simultaneous determination of pharmaceutical compounds and accurate quantitative prediction of them are of great interest in the clinical and laboratory-based investigations.This work has focused on a comprehensive comparison of Partial Least-Squares (PLS-1) and Artificial Neural Networks (ANN) as two powerful types of chemometric methods. For this purpose, montelukast (MONT), fexofenadine ...
متن کاملNon-Linear Least-Squares Optimization of Rational Filters for the Solution of Interior Eigenvalue Problems
Rational filter functions improve convergence of contour-based eigensolvers, a popular algorithm family for the solution of the interior eigenvalue problem. We present an optimization method of these rational filters in the Least-Squares sense. Our filters out-perform existing filters on a large and representative problem set, which we show on the example of FEAST. We provide a framework for (n...
متن کامل